QBio305: Population & Quantitative Genetics

Module Responsible: Prof. Dr. Maria von Korff Schmising	Version: 30/04/2022
Module Organizer: Prof. Dr. Maria von Korff Schmising	Type: Compulsory

Lecturer:

Prof. Dr. Maria von Korff Schmising, Prof. Dr. Juliette de Meaux, Dr. Markus Stetter

Total Working Time 180 h	Credit Points 6 CP	Contact Time 60 h	Self Study 120 h	Duration 1 Semester
Course Components		Group Size	Frequency	
Lecture:	3 SWS	P: 40	Every Winter Semester	
Exercise:	1 SWS	P: 40		

Learning Competencies:

After completing the module, students can:

- describe types and sources of genetic variation and explain methods for the detection and characterisation of genetic diversity
- define and describe important population and quantitative genetic concepts such as: genetic drift, gene flow, natural selection, selective sweep, mating systems, heritability and quantitative traits
- infer population histories and signatures of selection from genetic and genomic data.
- Explain and estimate components of phenotypic variation from experimental data
- Understand and apply statistical methods for QTL detection and association mapping
- evaluate results from crossbreeding and breeding experiments and develop explanatory models.
- Describe the genetic and genomic changes implicated in crop domestication

Content:

- Origin of molecular diversity
 - Types of mutations (and how to detect them)
 - Models of mutations
- Detection and Quantification of genetic variation
 - Heterozygosity
 - DNA sequence variation (SFS, pi, theta)
- Genetic differentiation
 - o Fst, PCA, STRUCTURE
- Neutral theory
- Recombination and linkage disequilibrium
- Selection
 - Types of selection (positive, balancing, purifying)
 - Detection of selection (sweeps, Fst outliers, Ka/ks)

Basic Phase. Semester 3